Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

May 27, 2019

Smarter, easier, cleaner…

When a person looks at how everything has changed over time, it is amazing.  Some things have changed for convenience, some out of necessity.  Sometimes for both reasons.  In the case of motor starting, it is both.

A long, long, time ago, motors were started by a contactor closure on the line controlled by energizing or de-energizing a coil. Simple on-off push button control.  Worked great for small and large motors alike.

As time passed, other methods of motor control emerged which included utilizing variable frequency drives and soft starters. This added more control of the starting, run time and stopping of the motor.

Doing so offers the reduction of mechanical wear and tear of the system. Of course, the energy savings when starting or reducing current during runtime is a bonus. Everyone likes to conserve energy and save money!

What is the most efficient way of running starter, with the least amount of heat loss? Across the contacts of a contactor. When the contactor is closed, current passes through the now connected busbars. No electronic components generate heat.

Where is this a benefit? Bypassing a soft starter while at speed is an example. Using a bypass contactor while at speed will enable the silicon-controlled rectifier (SCR) to be gated off, producing lower heat.

There are times when a purely solid state device is desired, for example in a high vibration or dirty environment. For those situations, solid state devices are desired. For the rest of the applications, a bypass contactor would be perfect!

What about just starting a load with simple on/off control or in an emergency… say, an application needs to be energized quickly and with little concern about wear and tear. For example, emergencies such as control of town flooding. In those cases, contactors are still very viable. So what are your options for closing a contactor?

As stated earlier, energizing a coil from a control power source connected to simple push buttons will perform the on/off control. A maintained button or two-position switch, used mainly in two-wire control, will hold the coil energized. The coil will be de-energized when the button is pushed again and the voltage to the coil is removed. Of course, the push button contacts have to be rated for the voltage and the current of the coil to which they are connected.

A momentary button (normally open) in combination with an auxiliary contact, is used to energize the coil and make a hold-in contact to maintain the circuit. When another momentary button (normally closed) is pressed, this will open the hold in contact, remove power to the coil, and the motor will stop. This is 3-wire control. Again, contacts are rated for the current of the coil.

Some wiring of components will have to take place, as you can see. Is there a way with less push buttons and wiring to accomplish the same thing?

Well, what about using a programmable logic controller, also known as a PLC, output to control a contactor coil? Control can be accomplished by utilizing the outputs and simple coding of the PLC instead of using external push buttons.

Utilizing a contactor PLC input to control the contactor would free up space traditionally needed for push buttons, etc.  In addition, a PLC that is most likely already in the system controlling other applications could be easily utilized for the control, thereby saving valuable panel space.

Using PLC control reduces the need to have push button contacts rated for large inrush current for coils of larger contactors. The PLC control is typically in the mA range, while the hold-in current and associated inrush current would be seen by the control voltage source and would be much higher.

What about the control voltage itself? Does it have to match the PLC input voltage? Well, the PLC input voltage typically does not match the coil voltage, say, 24 VDC for the PLC input. A person could have coil voltage of 120 VAC, and have the coil controlled by the 24 VDC PLC input.

Just like an interposing relay would behave. But, in this case it would be built into the coil. Control voltage would be different from the voltage being controlled.

Every application is different, so which method provides the best fit and function? Push button or PLC control?

To find out how the new contactors from Allen-Bradley can assist with your contactor needs, contact your local Rockwell Automation sales representative.

For more information, visit HERE.


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil