Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

Application Overview

A Massachusetts-based municipal water treatment facility needed to upgrade their aging 350HP 18-pulse drives. They turned to a local Yaskawa drives distributor, who recommended a reliable, compact, and cost effective retrofit with Yaskawa’s U1000 Industrial Matrix Drive.

Challenge

The water treatment facility has four 350 HP pumps. The pumps run 25 MGD on average, but can reach 75 MGD in less than an hour with heavy rain fall. Three of these pumps can satisfy this peak demand. The last pump is used as back-up in case one of the three were to fail. Failure of one pump during peak flow without a back-up could lead to a precarious situation. If the back-up pump and the designated lag pump were to fail, the back-up of the influent main could cause overflowing manholes and flooded streets.YW1.jpg

Based on the recommendations of the facility manager, the city made the decision to move forward with updating all of the influent drives. They began by upgrading their aging 350 HP Robicon 18-pulse pump drives, which had become time-consuming and costly to keep in working order.

Solution

YW2.jpgThe Yaskawa distributor realized that a complete replacement would likely require a different size cabinet. The staff at the facility would also need time to become familiar with it. So they recommended a retrofit option using the Yaskawa U1000 Industrial Matrix drive.

After the facility contacted a sister facility which was already using Yaskawa drives, they agreed with the retrofit option.

Since the U1000 drive is a stand-alone, low harmonic drive with regenerative capability, a lot of unnecessary components inside the cabinet were able to be eliminated. The circuit breaker from the previous system was also able to be reused.

Results

The U1000 solution meets the input harmonic current capabilities of the previous 18-pulse package at rated power and also provides excellent harmonic current levels throughout the load range.YW3.jpg

The efficiency improvement was so dramatic that the water treatment facility was able to shut off the additional cabinet fans required to cool the previous system. They realized an immediate increase in efficiency due to reduction of the building’s cooling requirements.

Reusing the existing cabinet saved space, but also meant that virtually nothing had changed for the staff. All the old controls on the door were easily integrated into the U1000.

The Yaskawa solution provided all of these benefits at a cost of approximately half of a new 18-pulse configuration. As a result of this project, the water treatment facility has moved forward with updating several more of their outdated 18-pulse drives with the U1000.

How Do Matrix Drives Work?

Matrix drive design removes the DC bus by using nine bi-directional IGBTs in a matrix arrangement to generate the variable frequency AC output directly from the AC input. This dramatically reduces the effects of harmonic distortion on the output signal, producing a smoother, cleaner output waveform. With no DC bus to charge, the associated non-linear

input current draw can be eliminated, providing cleaner power to the load. Figure 1 shows the Matrix topology.

 

Note that in the Matrix design, any input phase can be connected directly to any output phase at any time. The key to the Matrix operation is its ability to turn on and off the bi-directional switches at the correct times to generate the proper output voltage and frequency required to operate the motor.

To better understand, let’s look at the three input phase voltages, shown in Figure 2.

In operation, the control built into the Matrix VFD continually monitors the voltage difference between each of the phases.

All drives use a PWM (pulse width modulation) waveform to generate motor voltage, including the Matrix drive. A standard drive pulses the DC bus to the motor to create the output voltage waveform. The time each pulse is ON (the pulse’s width) helps to determine the output voltage and final RMS voltage of each cycle of voltage.

Instead of using a DC bus, the Matrix drive pulses the motor using its input voltage. This is done in two steps. The low input voltage and mid input voltage is used for the first step and the mid-voltage and high voltage is used for the second step. The reverse order is used to turn off the pulse. This process is repeated over and over to generate the PWM output waveform constantly adjusted along with the ever changing three phase input voltage.

The constant use of the input voltage means current is constantly being drawn. Therefore, the Matrix drive does not mitigate harmonics. Instead, it naturally draws input current with less than 5% iTHD automatically as it provides motor control.

YW4.jpgMatrix Drive Regeneration

In addition to the low harmonics and near-unity power factor, the Matrix design also provides energy savings through regeneration. When a motor is being driven by a load, as opposed to driving the load, it acts as a generator, sending the extra power back to the VFD. The extra regenerative energy is then put pack onto the grid to be dispersed to other loads on the grid, which reduces the utility power demand. Examples include applications such as pump jacks, where the load oscillates between motoring and regeneration, and downhill conveyors that are in a continuous regenerative state.

In conventional drives, dynamic braking resistors can be used to divert the regenerative energy away from the VFD and prevent a DC bus overvoltage condition. The nine bi-directional IGBTs of the Matrix drive enable the regenerative energy to be directed back to the supply to be credited against the user’s power bill.

Monitoring

Some Matrix VFDs can monitor power in several ways to give instant feedback on energy saved. When provided with the $/kwh billing rate, the display on the drive can show the following information on request:

  • Power output
  • Power consumption
  • Regenerative power
  • Power saved
  • Power bill

Comparison to Other Solutions

Of course, there are other means to mitigate the harmonics of VFDs. These include active front ends and multi-pulse transformers, which require significant additional components in combination with the VFD, all

of which mean added bulk, cost, and wiring connections. The Matrix accomplishes low harmonics all within the drive – three wires in, three wires out.


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil