Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

July 11, 2019

Modern 5-axis and multi-tasking machines as well as high-precision machining centers for micro-cutting enable continuously new and improved machining concepts. In addition to the cutting edge, the choice of the tool clamping device is the main key to success. The range of technologies is correspondingly large. A systematic comparison helps to define the optimum clamping technology for the respective machining process.

The varied requirements of the individual sectors are reflected by the different distribution of toolholding systems worldwide. While about 60% of these systems in Europe are thermal toolholders, the corresponding share in the USA and Asia is 20% and 30% respectively. Collet chucks, on the other hand, play a much larger role outside of Europe than in Germany. The proportion of high-precision hydraulic expansion toolholders, in turn, is between 8% and 15% worldwide. When assessing the development in the market for toolholding systems, two aspects become particularly clear: First, the variety of variants is increasing. On the other hand, precision mountings are rapidly gaining in importance as the improved quality and performance of machine tools leads to growing demand for process reliability and increased tool life. In addition, increased efficiency in the production of precision toolholders significantly reduce the cost over mechanical chucks, such as Weldon, Whistle-Notch, or collet chuck systems. For hydraulic expansion toolholders in particular, entry-level prices have dropped significantly. This makes it all the more important to question established toolholder strategies on a regular basis, especially when investing in new machine tools.

An assessment of the overall system

When we compare the individual toolholding systems, their technical characteristics and their interfaces to the machine spindle, it becomes clear that there is no optimum toolholding system for all applications. Selecting a system is always a unique decision that depends on a variety of parameters. The toolholder should never be considered in isolation, but always in terms of the interaction of the entire system, consisting of workpiece clamping, workpiece, tool, toolholder, spindle interface and machine. As the foremost interface with the workpiece, the toolholder plays an essential role, not least because it is able to at least partially compensate for weaknesses within the overall system.

The ideal toolholding system should be selected in several steps. First, it is important to define the basic criteria that significantly influence the underlying stability of the process. These include the required clamping force, radial rigidity, interfering contour and, if applicable, the suitability for high-speed applications. In the second step, the focus is on quality criteria that affect process quality, precision and productivity. These include run-out accuracy and repeat accuracy, balancing grade, vibration damping, coolant supply and the possibility of length preadjustment. Finally, in the third step, it is advisable to consider economic criteria within the framework of a cost-benefit analysis (i.e. acquisition costs, service life, flexibility and reusability, as well as the costs of ongoing operation).

Basic criteria are vital for process stability

The basic criteria for the toolholder selection can be understood as KO criteria. They must be met for the machining process to proceed smoothly.

Clamping force/torque: The clamping force of the toolholder determines to what extent the torque at the interface between the toolholder and the tool can be controlled. If the clamping force is sufficient, the cutting edge of the tool will engage the material evenly. If it is not enough, the tool will begin to turn in the holder and the cut will be unsteady. In extreme cases, the tool may even be pulled completely out of the toolholder. The torque transmission is achieved in different ways in the individual toolholding systems: Tools can be screwed by thread into the base body. In this case, the thread must be designed so that it at least corresponds to the torque output. A second variant is mechanically clamped tools that are equipped with a positive driver. This kind of clamping would not fail until the applied torque exceeds the breaking or shear strength of the components. As a rule, these strengths are well above the torque levels occurring during machining, so high process reliability is ensured for mechanically clamped tools. Finally, the third option is non-positive tool clamping, which uses cross-press connections. In this case, the bore receiving the tool is influenced by heat or external forces so that the tool is tensioned by an overlap. As a rule, precision toolholding systems, such as hydraulic expansion toolholders, work according to this principle. In the context of recent technological developments, it has been possible to increase the clamping forces of hydraulic expansion toolholders to such an extent that even large volume machining can be reliably achieved. With a diameter of 20 mm, torques of up to 900 Nm are transmitted with modern hydraulic expansion toolholders.

Radial rigidity: High radial rigidity allows high cutting forces (i.e. large infeeds and high feed rates). It is therefore an essential criterion for large volume machining, since it crucially influences the machining time and thus the productivity, but also the possible projection of the tools. The radial rigidity depends on the material properties of the toolholder (elasticity modulus) and its processing, on the geometry of the toolholder and on its integration into the overall system of the machine tool, particularly from the interface to the machine spindle. Put simply: the shorter the toolholder, the greater its diameter; the more homogeneous the unit consisting of tool and toolholder taper, the stronger the wall of the toolholder taper and the more extensive the support for the taper on the machine spindle, the greater the radial rigidity.

Interfering contour: If workpieces on modern 5-axis machines are completely machined in just two clamping steps, accessibility plays an essential role. What is needed are slim toolholders that transmit a sufficiently high torque while also ensuring high precision on the workpiece. In particularly narrow spaces, alternative tool extensions can be used, which can be mounted between the tool and the toolholder taper if required. In contrast to optimized interfering contours toolholders with a spindle interface, tool extensions can be used very flexibly. These are offered with different clamping technologies.

High-speed suitability: If spindle speeds of 80,000 RPM and more are achieved during high-speed cutting, the toolholder tapers must meet special conditions in terms of geometry, run-out accuracy, balancing grade but also in terms of process reliability during tool change. The smaller the clamping diameter, the more frequently mechanical universal toolholders, thermal shrink toolholders or hydraulic expansion toolholders will reach their limits, whether it is because the available space is not sufficient for the corresponding clamping mechanism or because tools of such small dimensions can no longer be reliably replaced or adjusted precisely. Other clamping technologies, such as polygonal clamping technology, which contain no moving parts, come into their own in these applications.

Quality criteria determine precision and productivity

Historically, compliance with the basic criteria has long been sufficient to perform most of the machining operations. Due to growing demands on the workpiece quality and the efficiency of the machining as well as in the context of modern machine tool concepts and procedures, factors previously considered secondary, which could also be described as quality criteria, are now gaining rapidly in importance. Both industry-specific and regionally different development speeds can be observed here. The greater the requirements with regard to dimensional accuracy, surface quality, but also with regard to economic efficiency, the stronger the following quality criteria come into focus.

Run-out accuracy: For precision machining, the run-out accuracy of the tools and the entire drive train is of crucial importance. They determine whether dimensions and tolerances are met. Furthermore, the run-out accuracy significantly influences the wear on the cutting edge of the tool and on the service life of the machine spindle. If the clamped tool does not rotate centrically to the toolholder axis, there is a risk that inaccuracies will occur and the required dimensions on the workpiece will not be met. Furthermore, the tools will start to bang during machining, which leads to micro-blowouts on the blade and accelerates wear on it.

Repeat accuracy: The repeat accuracy of a toolholder describes how well a toolholder taper can reproduce a defined parameter over several attempts. For modern precision machining, it is not so much the absolute accuracy but rather the repeat accuracy of the machine and thus of the toolholder that is decisive. Systematic machine errors can be compensated for comparatively easily in modern CNC machines using algorithms in the machine control system. However, this is only possible if there is a high degree of repeat accuracy, i.e. if the respective deviations are always as identical as possible. The repeat accuracy of the toolholder is therefore decisive in determining which accuracies are ultimately to be achieved on the workpiece.

Balancing grade: In simple terms, an imbalance arises when the mass in a rotating body is distributed unequally, since either the center of gravity is not located on the axis of rotation (static imbalance) or the principal axis of inertia is not parallel to the axis of rotation (dynamic imbalance). Toolholders often have a combination of static and dynamic imbalance. Causes can include: Design-related technical interpretations of the toolholder or the tool (e.g. single-edged tools); asymmetrical design of the toolholder (e.g. due to gripper grooves or clamping screws); asymmetrical mass distribution due to manufacturing tolerances; misalignment or errors in the mounting of the rotating body. Toolholders with large imbalances have negative effects in several respects: poorer surface quality due to vibrations on the toolholder; limited achievable cutting speeds; decreased production accuracy; shorter tool life; bearing damage to the machine spindle.

Vibration damping: Depending on the indulgence frequency response of the overall system comprising machine, toolholder, tool, workpiece clamping and workpiece, vibrations occur during each machining process. These can have considerable effects on the machining result and lead to increased tool wear, tool breakage or machine damage. Similar to a shock absorber, toolholders are able to damp oscillations and support smooth and even cutting engagement, depending on the clamping technology. This allows noise emissions to be minimized, the quality of the workpiece surface is improved, tool life is prolonged, and the machine spindle can be protected.

Coolant supply: Coolants perform many functions in machining. They remove chips, reduce heat and friction, ensure a uniform temperature of the tool and workpiece, and help to ensure that tolerances are met. Depending on the type of coolant supply, a distinction can be made between external cooling, peripheral cooling and internal cooling. There are particular advantages with internal cooling: the cooling lubricant arrives exactly at the cutting edge, with no need to manually align the coolant nozzles; chips are also reliably removed from narrow and deep contours; even when drilling deep bores, the cutting edge can be cooled effectively. As a result, the tool life is extended and the process parameters can sometimes be significantly increased.

Economic criteria influence the efficiency of machining

While the basic criteria and quality criteria directly define the machining process and are always to be considered as a priority, the economic criteria help to inform the final decision from an economic point of view. In addition to the pure acquisition costs of the toolholder taper, on the one hand the direct costs have to be taken into account: life time, investments in peripherals, running costs (tool change, cleaning, length preadjustment, maintenance), flexibility, power consumption during tool change, and reusability of mountings. On the other hand, indirect costs in particular play a key role. These include above all the tool costs (as the service lives of the tools vary considerably depending on the clamping system used) as well as the costs/savings resulting from reduced or increased productivity. Viewed over the life span, indirect costs per toolholder taper can lead to savings in the five-figure range. In addition, the aspect of accident prevention has been rapidly gaining in importance recently. Burning or crushing in particular are considered potential risks.

Systematic comparison

The criteria catalog shows that a detailed consideration of the respective application is always recommended when selecting a toolholder. As a competence leader for gripping systems and clamping technology, SCHUNK has extensive expertise in this area. Furthermore, the SCHUNK toolholder program is considered the most comprehensive range of technology made in Germany. It ranges from mechanical toolholders and heat shrink mounts, to attractively priced hydraulically tensioned toolholders, to high-end chucks based on hydro-expansion or polygonal clamping technology. The iTENDO sensoric toolholder is currently top of the line, which allows for seamless condition monitoring and documentation of process stability, real-time control of speed and feed rate as well as unmanned limit value monitoring.

Find out more HERE.


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil