Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

January 14, 2020

There are two types of electric motors, alternating current (AC) and direct current (DC). AC motors can be synchronous or asynchronous. Synchronous motors are found in applications where speed and accuracy are essential, including synchronous clocks, timers in electronic appliances, and audio recorders. Able to operate at variable speeds, low-maintenance, and durable, asynchronous, or induction, motors see wide industrial use. Applications such as lifting, mixing, pumping, compressing, and drilling find induction motors easy to operate and more cost-effective than synchronous and DC motors.

Of the two main types of induction (asynchronous) motors, single-phase and three-phase, the single-phase motors are usually limited to applications with small electrical loads, such as household appliances, because single-phase motors cannot self-start. Three-phase motor systems have much broader industrial and commercial use because they require less copper wiring and are therefore less expensive, smaller in size, more efficient, and run more smoothly (less vibration).

Sensata DRMS Hybrid Motor Starters offer the optimal solution for induction motors with 6 functions in the same unit including Forward/Reverse, Soft Start/Soft Stop, Motor Overload Protection, and Mains Isolating Relay.

CONTROLLERS ARE CRUCIAL

Motor systems rely on a starter, or controller, because it controls the performance of the motors by starting, stopping, forwarding, reversing, accelerating, and decelerating the motor as well as protecting it from overloads or faults.

The most basic controller is an on/off switch between the motor and the power supply, while the more complex controllers control the speed and torque of the motor.

Direct-on-line (DOL, or across-the-line) starters are the most basic type of motor starter; when energized, they immediately connect the motor terminals to the power supply. DOL starters are useful if the high inrush current of the motor does not cause excessive voltage drops in the supply circuit. They are suitable for small water pumps, compressors, fans, and conveyor belts. However, across-the-line starters cannot provide feedback.

In addition, in the case of an asynchronous motor, such as the three-phase induction motor, which draws a high starting current that is typically six to seven times that of the full load, the DOL starters will not be able to protect the motor from the inrush.

PROTECTING EQUIPMENT AND EXTENDING ITS LIFE

Motor controllers face many forms of wear and tear. In particular, three-phase induction motor starters must deal with damaging factors such as inrush current and electric arcing.

Inrush current, also known as the switch-on surge or the input surge current, is the high level of current drawn by the motor to start accelerating to full speed. During this period, the motor often needs to draw in current that is up to seven to 10 times the normal operating load. Current overloading, although lasting less than one second, will cause torque surges that cause mechanical stress on the machine, especially when the start and stop cycle is repetitive. The basic DOL starters will not be able to protect the motor from the inrush. Therefore, the controller needs to have a protective mechanism to buffer the downstream equipment adequately.

Electric arcing—where the flow of an electric current through a gas causes electrical breakdown of the gas and discharge—occurs most frequently in motor controllers where contacts repeatedly open (break) and close (make) an electrical circuit. Electric arcing produces a large amount of heat, which will melt or even vaporize small parts of the contact surface, damaging the motor controller.

In addition to dealing with inrush current and electric arcing, three-phase induction motor starters also need a soft start and stop function. Soft starts and stops prevent damaging equipment as well as the heavy and bulky objects moved by compressors, conveyor belts, and gate systems. Due to their mass, such objects have considerable momentum even at low speeds.

Soft starters and variable frequency drives can both be used to protect the equipment and extend the life of the motor by reducing inrush current and the ensuing heat generation caused by frequent starts and stops.

MAJOR TYPES OF MOTOR STARTERS

Motor soft starters, or reduced voltage solid state starters, can temporarily reduce the current load and torque surge during the start-up of a motor while smoothly ramping up the speed of the motor. As a result, the soft starter lowers the mechanical stress on the motor and shaft and lengthens the system’s life. Soft starters can be customized for individual applications. They can help avoid pressure surges in pump applications and start moving conveyor belts smoothly to aid in minimizing jerk, stress, or slip. Because soft starters have higher electrical complexity than across-the-line starters, they often incur cost-performance issues.

A variable-frequency drive (VFD) uses electromechanical drive systems to control motor speed and torque by varying motor input frequency and voltage. As a result, VFDs can reduce the current needed to start the motor. A VFD easily interfaces with automatic control systems. Variable-frequency drives are also highly energy-efficient, helping reduce peak energy demand. However, the global market penetration for VFDs is relatively small due to their high price point and sensitivity to environmental factors such as temperature and voltage surge.

While soft motor starters and variable-frequency drives already offer obvious benefits for motors, manufacturers are continuing to develop systems with greater functionality and lower price points.

HYBRID MOTOR STARTER ADVANTAGES

Sensata’s DRMS Series hybrid motor starters can provide up to six functions in the same unit: Forward/Reverse, Soft Start/Soft Stop, Motor Overload Protection, and Mains Isolating Relay.

With their soft start/stop feature, Sensata’s DRMS Series hybrid motor starters offer especially pronounced benefits to conveyor systems. In addition to their electromechanical relay feature, the DRMS Series hybrid motor starters include a solid state relay feature, which uses semiconductors for contact-free operation to achieve quick and wear-free power control.

With the performance offered by the solid state relay and the reliability of the electromechanical relay, the DRMS Series hybrid motor starters are more effective in mitigating the destructive effects of high inrush currents, the resulting mechanical stress, and the formation of gaps in the system. As a result, the combined relay features achieve higher performance and consistency, lower power consumption, better safety, and longer equipment life.

In addition, the DRMS Series hybrid motor starters are compact at only 22.5mm in width, which reduces the space requirement for a motor starter by up to 75 percent. Lastly, compared to variable-frequency drives, which cost anywhere from $400 to $1200, the DRMS devices offer a more economical option.

The DRMS Series hybrid motor starters can be used in conveyor systems, gate systems, and compressors by machine builders, panel designers or builders, and production facilities. Furthermore, these hybrid motor starters have a higher max motor rating of 400V versus other comparable products; the high max motor rating enables the use of DRMS Series hybrid motor starters in a wider range of industrial applications than other products can handle.

CONCLUSION

Motor starters for induction motors undergo many start and stop cycles. Factors to consider when comparing motor starters include performance, durability, reliability, size, price point, and protecting equipment from inrush current and other potentially damaging phenomena. Direct-on-line starters are reliable but offer little self-protection or protection for the assets the motors move. Greater protection is available with VFDs but at an expensive price point. Hybrid motor starters strike a balance between all these factors and therefore, deserve significant consideration for motors that work with valuable assets.

Source


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil