Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

March 2, 2020

By Bill Sarver

What will the automotive marketplace look like in 10 years and how do I prepare for it? That’s the question foremost on the minds of the powertrain plant personnel I encounter in my work as an industry consultant.

It’s not an easy question to answer given that we are in the midst of a truly revolutionary time in the automotive industry. To address regional emissions mandates and upcoming bans on gasoline and diesel-powered automobiles, manufacturers are ramping up their focus on electric vehicles (EVs).

Mature automakers are beginning to abandon development of gas combustion engines altogether. EV startups are vying for their share of the market. And all players are keenly focused on optimizing powertrains and EV drivetrains for a future characterized by autonomous and connected vehicles on the one hand – and more personalized vehicles on the other.

To paraphrase a popular saying, the only constant in the “new” powertrain business is change.

And the industry winners in the years ahead will be those who can quickly transform manufacturing lines and processes to take advantage of new technology and scale up fast to meet market demand.

Roadblocks to EV Powertrain Manufacturing Agility

Computer-aided design (CAD), product lifecycle management (PLM) and automation platforms have come a long way in streamlining manufacturing planning and design. Combined with smart devicessensorsMES, and IoT analytics, these systems deliver contextualized information to optimize operations and help guide continuous improvement.

But many existing systems fall short in one significant way. They cannot test and assess the impact of product design or line configuration choices before they are in place.

In other words, what actually happens if you add this new station or process to your EV powertrain line – or ramp-up a line originally configured to run 30 jobs per hour to one that runs 45? What choices will improve overall performance? What is the best method to rebalance your line?

Being able to quickly address logistic, quality and/or personnel issues while in production or during the design process before significant capital investments are made is critical to manufacturing agility and success.

How Digital Twins Change the Lifecycle Equation

With the advancement of dynamic digital twin software, legacy powertrain and new EV drivetrain producers are turning to the virtual world for answers and a better way to manage the manufacturing lifecycle.

A digital twin is a digital model of the physical manufacturing system created by connecting directly to CAD and PLM systems – plus the operational logic of the system. The result is a virtual, accurate representation of the manufacturing line that uses a real control system.

With a digital twin, you can prototype the design of a powertrain or drivetrain line in the virtual world – and test, debug and verify performance before you build or commission it.

Then, emulate the line throughout the system’s lifecycle to model performance and test new products and configurations. Keep in mind, digital twins leverage usage data captured by sensors and automation in the physical world to deliver a holistic picture that sheds light on current operation and potential bottlenecks.

Lower Risk of New Technology Implementations with Better Decision-making

Simply put, dynamic digital twins help you reduce the risks associated with innovation by clearly demonstrating the impact of system design choices.

Digital twins enable EV drivetrain and battery module/pack producers to address the manufacturing lifecycle in a new way – and create a truly agile environment that keeps pace with technology and market developments.

Learn more about how Rockwell Automation dynamic digital twin solutions can help you unlock a more agile manufacturing process.

And discover other ways we are helping EV manufacturers win the race to market.

Source


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil