Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

BrakingResistor1August 4, 2020

By Mike Keefe

When designing a motor control system, it is not always clear if a braking resistor is required and, if it is, how to proceed in selecting a braking resistor. This post is intended to simplify that process so it is clear when and how to select a braking resistor for your application. 

Why are braking resistors necessary?

Braking resistors are introduced into a motor control system in order to prevent hardware damage and/or nuisance faults in a VFD. They are required because in certain operations, the motor controlled by the VFD is acting as a generator and power is flowing back towards the VFD, rather than towards the motor. A motor will act as a generator whenever there is an overhauling load (e.g. maintaining a steady speed as gravitational forces try to accelerate an elevator as it moves down) or the drive is being used to decelerate the motor. This causes the drive’s DC bus voltage to rise and will lead to over voltage faults in the drive if the generated energy is not dissipated.

BrakingResistor2

There are a few basic ways to deal with the energy generated by a motor. First, the drive itself will have the capacitance to absorb some amount of this energy for a small amount of time. This is typically the case when overhauling loads are not present and a fast deceleration is not required. If there are portions of the duty cycle where the energy generated is too great for the drive alone, then a braking resistor can be introduced. The braking resistor will dissipate the excess energy by converting it to heat across a resistor element. Finally, if the regenerated energy from the motor is continuous or the duty is high, then it may be more beneficial to use a regen unit rather than a braking resistor. This will still protect the VFD from hardware damage and nuisance faults, but allows the user to capture and reuse the electrical energy rather than dissipating it as heat.

What should be considered when selecting a braking resistor?

Once it has been decided a braking resistor is needed for the application, there are two main factors when selecting the resistor: the resistance value and the power dissipation capacity of the resistor.

Minimum Resistance Value

BrakingResistor3VFDs that use a brake resistor will also have a “chopper circuit” or brake transistor. When the DC bus voltage gets too high, the brake transistor shunts current from the DC bus across the brake resistor. This brake transistor circuitry has current limitations and the VFD manufacturer will typically list a maximum current value and duty cycle.

Since V=IR, if the voltage is constant then a smaller resistance will lead to a larger current. Thus if the max voltage is known to be the KEB over voltage level of 840VDC, it is possible to calculate the minimum resistance that would keep the current value below the braking transistor’s max current rating. While the minimum resistance value doesn’t affect the operation of the resistor or its ability to dissipate power, it is crucial to ensure it works properly with the VFD.

BrakingResistor4

Power Dissipation Capacity

The second consideration when selecting a braking resistor is its ability to dissipate power. KEB braking resistors are listed with the amount of power they can safely dissipate if used continuously (PD) as well as three values for intermittent duty. Each of the numbers in P6, P25, and P40 refer to the cumulative number of seconds the resistor is used over the course of two minutes. For example, the KEB 10BR100-1683 resistor could safely dissipate up to 2200W for one stretch of six seconds over the course of two minutes or instead could do two cycles of three seconds each over the course of two minutes. BrakingResistor5

Now that it is known what resistance values will safely work with the VFD and the power dissipation capabilities of the various resistors, it must be considered how much energy will be generated back towards the drive that will need to be dissipated. This will ensure the selected braking resistor has enough capacity to safely dissipate the energy generated from the motor. The first way to do this is through calculation.  It is possible to calculate the power generated from the motor if the mass moment of inertia of the motor and load, motor torque, speed change, and time of the deceleration are all known. More information on performing these calculations can be found in the braking resistor manual. However, in real world applications it can be difficult to know and/or calculate the mass moments of inertia, particularly of the load. Because of that, it is commonly necessary to determine the proper power size of the braking resistor through a testing method. BrakingResistor6

The general rule is that the larger the load and the faster the deceleration, the more power that will need to be dissipated.  However, by utilizing the scope function in the Combivis 6 software, it is possible to record the drive’s DC bus voltage throughout the operation to get a more accurate picture of the braking resistor usage. With the scope it is possible to monitor if a resistor with greater power dissipation is required or if instead the resistor is sufficiently sized. In the latter scenario, it may be possible to adjust the operation to improve performance, such as making the deceleration faster. 

BrakingResistor7

Braking Resistor Installation

The final consideration when selecting a braking resistor is to ensure that it is installed properly.  If a braking resistor is not installed according to UL standards, the circuit can fail in a manner that is a fire hazard. More information on safe connection of a braking resistor can be found here.

In addition to our traditional resistors, KEB is increasingly selling intrinsically safe brake resistors which fail much like a fuse protecting the system in the case of short circuit failure.

The installation environment is also important. Hazardous locations and installations with fibers (textile, sawdust) that are flammable will need special consideration.

Interested in learning more about how KEB drives and braking resistors can be utilized in your application?  Contact an Applications Engineer at KEB America today!

Source


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil