Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

October 7, 2020

By Mark Dziedzic, Senior Product Marketing Manager, Sola HD, Emerson

A decrease in machine availability due to power quality issues disturbs the natural flow of manufacturing, leading to lost productivity, increased maintenance requirements and eroded customer trust. Machine downtime is the single largest source of lost production, typically accounting for almost 5 percent of factory losses—although many manufacturers lose more. For example, when the cost of equipment replacement and parts, labor, maintenance, delays, sales and production are added up, downtime can exceed $10,000 per hour.

With such high costs at stake, keeping machinery operating smoothly is critical to the bottom line. OEMs who focus on improving their machine availability through monitoring overall equipment effectiveness (OEE), as well as deploying power quality strategies, will strengthen their competitive position and customer relationships.

Elements of OEE

Power quality falls under the category of OEE, which is a best practices metric that identifies the percentage of planned production time that is truly productive. An OEE score of 100 percent represents perfect production: manufacturing only good parts, as fast as possible, with no downtime. OEE is a simple yet powerful roadmap that helps production floor people and management to visualize and eliminate equipment losses and waste.

Calculating OEE begins with establishing Planned Production Time (PPT). PPT is total time minus the time when the manufacturer has no intention of running production, such as lunches, employee breaks, scheduled plant shutdowns or when there are no orders to produce. To establish the OEE of a machine or process, its PPT is scrutinized targeting the lean manufacturing goals of reducing productivity losses by factoring in availability, performance and quality using this formula: OEE (%) = availability ratio × performance ratio × quality ratio.

Availability ratio

Availability has to do with any event that halts scheduled PPT for several minutes or more, whether the events are “planned” i.e., die changeovers, or “unplanned” such as machinery failures or a shortage or materials.

As an example:

  •    -   PPT is 10 hours (600 minutes)
  •    -   Downtime = Machine breakdown is 30 minutes, changeovers are 30 minutes, stoppage is 30 minutes. Total of 90 minutes
  •    -   Available time is 600 – 90 = 510 minutes
  •    -   Availability ratio: 510 minutes divided by 600 minutes or 85%


Performance ratio

Performance takes into account anything that slows down the manufacturing process like jams, breakdowns, accidents or basic machine wear. This total is subtracted from standard output. Standard output is the best output rate known to be produced on the machine, regardless of whether that is above or below design speed.

For example:

  •    -   Standard output is 3 parts per minute x available time (510 minutes) = 1530 parts
  •    -   Actual output (defects and good parts) = 1250 parts
  •    -   Performance ratio is 1250 parts divided by 1530 or 81%


Quality ratio

Finally, there’s quality. This ratio measures defective parts like scrap, rejects, or parts that need reworking, to good parts.

Example:

  •    -   Actual parts output is 1250
  •    -   Defective parts are 150
  •    -   Quality ratio is (1250 – 150) divided by 1250 or 88%


Therefore, OEE of the machine is 85% (availability) x 81% (performance) x 88% (quality) = 55.4%.

While many manufacturers have risen to the challenge of improving OEE by honing in on basic availability, quality and performance issues, one area that has remained largely elusive is the role power quality plays in all three. After all, how do you judge the quality of such an unseen commodity as electricity?

Understanding total power quality

Power quality ensures that the needs of a facility are met by the existing source of electricity from the service entrance to the most critical production equipment. Power disturbances such as voltage transients, surges and spikes, harmonics and voltage imbalance will have an impact on the quality of electricity, and therefore, carry the potential to disrupt production, damage manufacturing equipment and corrupt data in automated environments. By conditioning incoming power, however, plant operators can be assured against outages and disturbances that can interrupt machinery availability and cause shutdowns mid-process.

The only way to mitigate the risk of poor power quality is to have the right technology, both for power protection and power conversion, since the power conversion choices made upstream can impact the type of power protection required downstream. Power protection plus power conversion results in a solution known as Total Power Quality (TPQ).

A power protection strategy consists of surge protection and filtering devices that protect critical operations across facilities from the continuous threat of transient spikes, noise and harmonic distortion. Employing an entire facility protection strategy safeguards the electrical system against most transients. Multi-stage protection involves clamping the initial high energy surge, filtering any remaining noise or transients to the protected sensitive equipment, and finally, protecting the data/signal lines entering or leaving the control panel or the factory floor. This coordination of devices provides the lowest possible let-through voltage to the equipment ensuring maximum productivity.

Surge Protection: These devices focus on limiting high-voltage spikes to a level that is acceptable to most electronic equipment. Plus, they’re a great first line of defense, using components that are placed in parallel with the line and serve as clamping mechanisms for high-energy impulses. Surge protective devices are typically installed at service entrances, on larger distribution panels and at the point of use as recommended by Institute of Electrical and Electronic Engineers (IEEE) in their Emerald Book (Standard 1100-2005): Recommended Practice for Powering and Grounding Electronic Equipment.

Filters: Low-energy transients and high-frequency noise (also referred to in the industry as electronic rust) are the primary causes for system disruption and long-term degradation of microprocessor-based equipment within a facility’s processes, for instance, PLCs and motion control systems that require clean AC power. Protection calls for the use of active tracking filters that attenuate impulses that would normally go untouched by standard, parallel clamping devices to limit stress and the electronic rust that degrade electronics.

Data/Signal Surge Protection: Networked industrial operations require error-free transmission of information for maximum productivity and integrity of data, but these areas are often overlooked when it comes to power protection. The importance of protection at this level grows with the manufacturer’s reliance on sensitive instrumentation, networked automation and uncorrupted data transmission increases with the adoption of Industrial Internet of Things (IIoT) systems. Data/signal line surge protection devices are used as the final part of the multi-stage protection strategy recommended by IEEE practices which involves clamping the initial high-energy impulse, filtering any remaining noise or transients to the PLC or sensitive equipment and finally, protecting the data/signal lines entering and leaving the control panel.

As for power conversion, in a processing or packaging environment there are critical power loads that warrant full protection. For example, a critical piece of machinery on the plant floor that would dramatically impact productivity if it were to shut down unexpectedly due to a power outage. This type of machinery requires an uninterruptible power supply (UPS) system capable of handling the load on its own for a reasonable period of time to perform a controlled shut down; limit scrap and enable faster restart of production. Several UPS topologies or types exist depending on production environment run-times and needs.

Online double conversion UPS systems provide critical machinery with the highest level of protection by isolating that machinery from raw utility power. It converts the input AC electricity from AC to DC and then back to fresh AC. If the power supply fails it is supplied directly from the UPS batteries.

This topology differs from a standby UPS, also called an "offline UPS," which is the most common type of UPS found in a computer or office supply store. It draws current from the AC and switches to battery within a few milliseconds after detecting a power failure. The line interactive UPS "interacts" with the AC power line to smooth out the waveforms and correct the rise and fall of the voltage. By contrast, the online UPS inverter is always on so that all incoming power is converted to direct current, which both fills up the batteries and feeds the inverter and provides more protection. Depending on the complexity of the controls, run-time and the amount of a control shut-down required, OEMs can decide which topology will work best for their application needs.

The Power of Protection

In the world of manufacturing, machine downtime is an ugly word. But it doesn’t have to be something you deal with in the dark. OEE metrics can measure the impact of downtime on each piece of equipment that’s integral to the manufacturing processes. Once the OEE score is established and tracked, the end users—perhaps with a little help from the OEM— should investigate how power quality may be degrading the three ratios that make-up OEE: availability, productivity and quality. Focusing on availability and employing power quality devices in a multi-stage design as recommended by the IEEE is critically important to reducing and eliminating future downtime and improving OEE and the bottom line.

For more information visit www.emerson.com/en-us/automation/solahd.


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil