Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

October 19, 2020

What on earth is a "channel monitor"! And then also in connection with the term "selective"? Images of gigantic ocean-going vessels quickly form on their way through the Kiel Canal, saving themselves the 250-mile detour through the North Sea, Skagerrak and Kattegat. And because the pilot prefers to check his message status on his smartphone instead of doing his actual work, he only monitors the channel passage selectively!

If circuit breakers do not work

While this is a nice interpretation of "selective channel monitoring", it is simply wrong. Experts who have spent hours troubleshooting a machine know this. This is particularly costly in complex systems in which switched power supplies electronically regulate the voltage and current at the output.

It is possible that in the event of a short circuit or overload, secondary fuses react more slowly than the power supply unit and therefore this selectivity is not applicable. This leads to critical situations, such as voltage dips, and in the worst case even to cable fires. But how is it possible that these downstream protective devices do not react? This requires a look back almost 30 years.

Convincing argument: high short-circuit protection

It was at the beginning of the 1990s when a change in the mechanical and plant engineering industry was about to take place: the change from transformers to electronic power supplies. At the beginning, only a small group of people dared to take advantage of the new devices. A regulated 24 V DC voltage and short-circuit protection according to a fixed defined characteristic curve obviously sounded too good to be true for potential users!

However, the rise of electronically regulated power supplies was unstoppable from then on, as more and more OEMs wanted to benefit from their advantages. Above all, the high short-circuit protection was a convincing argument. If a short-circuit went unnoticed in the transformer power supply units used up to then, it heated up the subsequent installation and possibly even set fire to it. With the electronically regulated power supplies, on the other hand, users were buying modern technology and at the same time greater operational reliability.

The search for short circuits outside the control cabinet

But how was it with short circuits outside the switch cabinet? Output-side miniature circuit breakers, in practice often combined with a signal contact going to the control system, reliably detected overloads and short circuits in the field. So why should this form of protection, which has proven itself over decades, not be retained? What was good and right for a transformer power supply unit, according to many users, had to be even better for an electronically regulated power supply! This false assumption caused many an electrician to despair in troubleshooting in the years to come. For example, if the reason for this fault was a bare cable in a drag chain, simply isolating the fault could take many hours, if not several days.

Loop resistance as an evil

But how could it be that the switch-mode power supplies with their advantages were not capable of reliably tripping miniature circuit breakers? This question not only drove the manufacturers of electronically regulated power supplies up in arms, but also drove suppliers of automation solutions to experiment.

It is no longer possible today to determine who was allowed to claim the exclamation "eureka" in the end. However, that is not so important either. Much more interesting is the result of countless tests and calculations - especially since these revealed a banal reason for the phenomenon of non-tripping miniature circuit breakers: loop resistance! The electronically regulated power supplies so enthusiastically celebrated by the market were simply not able to provide the current required for tripping for at least 100 ms because of this.

The calculation of the loop resistance

So, the loop resistance! In order to understand why this latest technology, of all things, is problematic, it is necessary to take a detour into the basics of mechanical and plant engineering. Up until 30 years ago, it was actually common practice to use type C miniature circuit breakers to protect installations in the field. What this means in combination with a switch-mode power supply is explained by an example in which an automatic machine with 6 A rated current is used. According to the formula 14 x Inenn, this requires a tripping current of 14 x 6 A, which in multiplication corresponds to 84 A. However, for a 24 V power supply to be able to provide this 84 A at all, its resistance must not exceed 286 mΩ.

That this resistance value is unrealistic is shown by a practical example, where the loop resistance of a 5 m long sensor cable with a wire cross-section of 0.34 mm2 is calculated. Its resistance is calculated from the formula R = ρ x l / A, where l is multiplied by two due to the outgoing and return lines.

If the individual values are now used taking into account the resistivity ρ of copper (0.0178 Ω x mm2/m), the result is already a resistance of 520 mΩ. With the additional resistances of the distribution line and the strands as well as the internal resistances of the miniature circuit breakers and terminals, the total resistance adds up to over 1.3 Ω.

Applied to the formula U = R x I, this means that a maximum current flow of 18.18 A is possible in an electronically regulated 24 V power supply. However, this is not sufficient to trip a type C circuit breaker with a rated current of 6 A. As described, it would require at least 84 A.

The grand entrance of the intelligent power supply system MICO

The realization that the switch-mode power supply units could not provide the required tripping current for the miniature circuit breakers had some curious consequences. Some machine and plant manufacturers suddenly built their applications with four instead of just one power supply, just to reduce the consequences of overloads and short circuits to a minimum.

There are still applications on the market today in which two switch-mode power supply units supply the electronic components and the controller in the control cabinet, and two more supply the actuators and sensors in the field. However, this approach is expensive because it requires three additional electronically controlled power supplies.

In addition to the additional purchase costs, these also require additional space in the control cabinet and do not solve the problem. It would then make more sense to form smaller units with consumers so that half of the machine does not go into a de-energized state in the event of a fault.

But back to the real story.

Switch off as early as necessary, but as late as possible

Murrelektronik was first confronted with these problems in 2003 and reacted quickly. After only one year of development, the manufacturer from Oppenweiler, Germany, presented the MICO (Murrelektronik Intelligent Current Operator) intelligent power supply system for 24 VDC applications at the SPS - and the market responded enthusiastically.

With their solution, the Swabian tinkerers had succeeded in designing the switch-off behavior of monitored channels in such a way that they switch off as early as necessary in the event of short circuits and overloads, but only as late as possible. The modules, whose current range can be fixed, were thus particularly suitable for applications in which many sensors and actuators with similar requirements had to be protected.

Lean power supply system

But selective channel monitoring was only one argument in MICO's favor. With a design width of 72 mm, the device was already 36 mm slimmer than the four miniature circuit breakers with one signal contact each used previously - and experience showed that this fuse approach in combination with an electronically controlled power supply did not work at all! So, the 108 mm on the top-hat rail that had been used up to then were a waste of time anyway.

Furthermore, it took a lot of installation time to wire four miniature circuit breakers with the corresponding signal contacts. For this reason, Murrelektronik's developers designed MICO with only one common potential, from which the individual channels can be accessed.

No need for oversized power supplies

Because the Swabian is not satisfied with the first best solution, he provided his intelligent power distribution system with features tailored to the needs of mechanical and plant engineering in the very first version. These include, among other things, cascaded switch-on behavior.

This method distributes the switch-on peaks, which is why oversized power supplies are no longer needed. During this process, the connected channels go online with a time delay of about 70 ms. Although this process only takes a little more than 200 ms for a four-channel device, this is already sufficient to dimension clocked power supplies according to the power actually required. This saves space in the control cabinet and keeps acquisition costs low, since the switch-on peaks are neatly compensated.

MICO monitors millions of current paths

With its intelligent features, MICO has earned the trust of many machine and equipment manufacturers around the world since its introduction to the market 16 years ago. By the end of 2019, 8,561,513 monitored current paths had been implemented, guaranteeing high operational reliability in a wide variety of applications worldwide.

Due to this enormous demand "Safety made by Murrelektronik", the MICO family has grown successively over time to offer a tailor-made solution for every application. The market appreciates this versatility. This is why MICO can confidently be compared to a pilot who safely maneuvers ocean-going vessels through the Kiel Canal without touching the canal walls. And with this safety behind you, you can also take a relaxed look into the distance or even use your smartphone.

One control circuit solution for the whole world

Murrelektronik offers a portfolio of solutions for multi-standard power supplies. These solutions use standardized products that are coordinated down to the last detail and are extensively certified. This means that the entire solution is designed to meet all relevant standards so that it can be used worldwide. The white paper shows the advantages of multinorm power supplies and contains complete circuit diagrams.

Source


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil