Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

December 1, 2020

By Blake Marchand

Ontario-based Enertics Inc. recently partnered with Mohawk College's Energy and Power Innovation Centre (EPIC) to complete third-party testing and validation of its LVMM 100 Motor Health Monitor Sensor Gateway, a new predictive maintenance tool for monitoring electric motors.

“Mohawk was able to provide us a testbed where we could run different scenarios,” explained Enertics President and CEO, Bobby Sagoo.

“In general, for companies – in this case Enertics – there’s certain technologies, software and equipment that they don’t necessarily have to host,” said Mariano Arriaga, General Manager for Mohawk College’s EPIC. Adding that companies take a risk when developing technologies like these and EPIC is a resource for them, “we are reducing barriers for testing, validation and demonstration; as much as we can.”

To that point, Sagoo noted, without the testbed EPIC represented it would have extended the company’s project from 6-months to a year, “Versus having access to the resources, laboratory there, and the talent able to work on the project, it really helped in expediting the whole project.”

“We are seeing this as a long-term relationship,” Arriaga noted. EPIC and Enertics have collaborated on a few projects already and have plans for future collaborations in the works.

For the students, Arriaga said, “It has been a combination of expertise and real industrial challenges from Bobby’s side, it has given them really good challenges. They have learned a lot and gotten some really good experiences.”

Arriaga explained that projects like this are also great for students when it comes to starting their careers. EPIC allows students to get quality experience while also giving them an in-road with businesses like Enertics, that, having collaborated with EPIC, know those students already have first-hand knowledge of their company. Going forward Arriaga said they will continue to build relationships with companies and pursue more projects as a developmental resource. Ultimately, to support the technological progression of industry in general, while also contributing to a dynamic workforce by turning out students with invaluable practical experience.

EPIC was able to test Enertics sensors in a simulated scenario as well as real-world industrial setting, which was beneficial for both sides, “Having the opportunity to bring the technology to a working system and really test it out there, if there are any modifications, enhancements that need to be done – that’s invaluable from our perspective,” commented Sagoo.

“Some of the ideas that came out of the testing are part of our technology roadmap going forward, in terms of what features we want to implement and what the market is looking for.”

Enertics’ LVMM 100 Motor Health Monitor Sensor Gateway represents a key component to the progression of IIoT toward facilitating the factory of the future. The product is expected to launch in Q1 of 2021, initially in India and Canada. The sensors are suitable for any electric motor of any size and type. They have tested it on motors for household appliances all the way up to mega-watt scaled machines. Enertics is also going through the regulatory process for industrial certifications.

How have industrial motors been monitored previously?

“If you look at any heavy industry, they would have a defined maintenance program called a PM program, as part of that program they would have teams doing vibration analysis, electrical parameter analysis, etc. etc. on a periodic basis,” explained Sagoo, discussing how industrial motor monitoring is generally conducted.

“Based on how critical the piece of equipment or motors may be, they might do this testing/analysis on a monthly basis, quarterly basis; in some cases, maybe even every 6 months or so. With this technology that we are launching, this is all going to be done on an on-going and online basis where the customer would have access to information at their fingertips 24/7, they don’t need to send any personnel out to the field to take these readings.”

What are the implications of the LVMM 100 Sensor Gateway for maintenance programs?

“The key value of our technology is to automate the whole process. In addition to doing the monitoring, we are able to pinpoint the problems. Say if a particular machine has a bearing issue or a stator winding issue, based on the analysis that we do on the sensor data, we can pinpoint down to that level, ‘this particular bearing is broken or is going to be broken,” the latter being a key component to the technology.

“By leveraging the predictive algorithms, we can inform the customer beforehand, ‘even though your piece of equipment may be okay today, it's trending toward concerning levels of vibration or temperature profile’ - based on that we can tell them, ‘now is the time to prevent this failure from happening.’”

“This brings the predictive elements of our solution to the table.”

How has IoT changed the way sensing technology can operate?

“When I was at GE, we did similar types of solutions from a monitoring perspective,” although they weren’t diagnosing or predicting problems, noted Sagoo. Currently and at that time, machine monitoring is conducted through a hardwired solution.

The IoT strategy provides portability by leveraging 4G LTE, and WiFi technologies, while also utilizing edge/cloud computing. “You don’t need continuous data all the time,” explained Sagoo. “If a machine is performing alright and there’s no anomalies, then there’s no need to bring all that data to the backend to analyze and store it. With this IoT focus, we have designed our systems in such a way that we keep track of all the anomalies, all the data locally at the edge level and only bring the higher resolution data to the backend for analysis when there’s a problem.”

“There’s a significant cost advantage, as well,” he noted. Explaining that often, laying cables for hardwire connections can be challenging in a heavy industrial setting. “Now you are able to do all that using wireless technologies.”

Are the settings flexible so that operators can tailor their alarms/notifications to their application?

“Yes. The way we designed the system, we kept it really flexible. When the product ships from the factory we have a default setting to start it up, but from there onwards,  customers would have options.”

In the process industries, for example, “for some critical processes, customers may want to reduce the threshold levels, to make the tolerances tighter.”

Aside from vibrations, what other abnormal behaviours can the sensors detect?

“We can detect temperature from various parts of the machine. For example, on the drive-end bearing as well as the non-drive-end bearing, we can sense the temperature change. We can also sense temperature from the stator winding of the machine. A lot of times, when there is a fault situation, these temperatures go up very quickly. What we do as part of our analysis is correlate this information from the temperature and vibration sensors and we draw conclusions based on that.”

“The vibration and temperature is good for smaller machines, to help diagnose up to 98-99% of faults, however when we go to the mega-watt scale machines, a lot of times there is a need to do additional analysis on the electrical parameters,” as Sagoo mentions above, this is an instance where Mohawk impacted the direction of their technology, “we have a technology roadmap based on the testing and validation we did at Mohawk,” he said.

“At the end of the day we’ll end up with a menu of options for the customers to choose from. We’ll have the physical parameters, temperature and vibration; and the electrical parameters, and from there we’ll be able to provide a very detailed machine analysis.”

What is the primary advantage for users of Industrial motors?

“The primary advantage is, again, without a continuous monitoring and diagnosis system, they are really in the dark. Even if they have a manual planned maintenance program which calls for technicians or engineers to test the machinery every month, or a week even – for some critical processes they may be testing them every week – but that’s still not a foolproof system, what happens if there’s an anomaly in the systems during the week? They wouldn’t have any visibility.”

“Having this kind of system in place, they are able to monitor continuously and pinpoint the problem areas continuously – but more importantly, from the predictability perspective, looking at the data analytics they can plan their shutdowns, their maintenance activities, their service activities, etc. on an actual basis. Extending the life of these critical assets but also optimize how they shut them down. And of course, that’s going to translate into the significant savings for them.

For more information, visit www.enertics.ca.


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil