Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

DCS-29-ABB-Cavitation1-400.jpg

September 27, 2021

Cavitation can be a serious issue for industry. It causes damage to pumping systems, reducing their lifetime and requiring costly maintenance and replacement, while in the beverage and dairy industry it can impact the quality of products being pumped. This article outlines the causes of cavitation and explains how the latest variable speed drives (VSDs) offer an efficient and cost-effective method to prevent it.

Cavitation can occur in many different pumping applications, but it is a particular challenge for the water and wastewater industry where a high number of large pumps are deployed. The result is an increased risk of downtime and higher maintenance costs. The issue goes beyond the need to replace a damaged pump. In remote areas in particular, the cost of sending a maintenance team with heavy lifting equipment to the site might be many times the cost of the pump itself.

The risk of pump damage is also important for the beverage and dairy industry. However, there is an additional risk of cavitation leading to the formation of bubbles or foam when pumping fluids such as milk, soft drinks or beer. In the dairy industry in particular, cavitation can damage the milk-fat globules. Or a batch of beer that has taken weeks to brew might foam to the point where it has to be discarded.

Cavitation can happen when the pumping process subjects a liquid to rapid local changes in pressure, creating vapor-filled bubbles. The exact point at which this liquid-to-vapor transition occurs depends on the pressure. It is well known that water will transition into steam at 100°C - its boiling point at normal atmospheric pressure. When the pressure in the system is reduced this occurs at lower temperatures. Eventually, when the pressure is reduced to a vacuum, the transition happens at room temperature.

When the impeller is spinning in an industrial centrifugal pump, high pressure is created on the front side of the blades. Simultaneously, there is low pressure on the back of the blades. In some conditions the water will vaporize, creating bubbles – see Figure 1. When these vapor bubbles reach areas of high pressure, they implode, collapsing back into liquid form and producing significant shockwaves. The rapid implosions generate a characteristic rumbling or cracking noise associated with cavitation, sounding like rocks passing through the pump.

DCS-29-ABB-Cavitation2-400.jpg

Each implosion causes only a tiny shockwave. However, because they occur in large numbers, the cumulative effect impacts pump performance. Eventually, cavitation damages the pump impeller, housing and other components in the pumping system through wear and metal fatigue. It is common for cavitation to shorten the life of a pump by as much as half. In the very worst cases, pumps have been destroyed in a matter of minutes.

Open systems are most at risk

Closed pumping systems circulate water in closed loops, typically for heating or cooling control. Their pre-pressurized setup generally prevents cavitation during operation, unless there is leakage.

In contrast, open pumping systems, such as for drinking water distribution or wastewater treatment, are subject to cavitation should the inlet pressure drop below the Net Pressure Suction Head (NPSH) – see Figure 3. NPSH, quoted in meters or feet, is a measure of the pressure experienced by a fluid on the suction side of a centrifugal pump. It is volume dependent and given by the pump manufacturer as a specific value for each pump.

DCS-29-ABB-Cavitation3-400.jpg

The inlet pressure to the pump will decrease as the level in the break tank decreases. This could lead to a situation where the inlet pressure drops below NPSH for the specific pump, resulting in cavitation. There is generally no risk of cavitation if the inlet pressure stays above the NPSH requirement.

Preventing cavitation

The first step to avoiding cavitation is to pay attention to the design of the pumping system. One vital measure is ensuring that the available NPSH exceeds the required NPSH. This can be achieved by decreasing the number of elbows and valves in the inlet pipework, shortening the length of the pipework, or increasing its diameter. Reducing the temperature of the fluid or pump can also help This isn’t practical in the water industry but might be possible when pumping beverages.

When working with existing systems, or where space is at a premium, it can be difficult to implement the optimum design. In which case, the answer is to consider how best to detect the onset of cavitation and modify the pump operation accordingly.

It can be possible to use discrete sensors, such as differential pressure transducers, to monitor the changes in pressure that accompany cavitation. However, it is more cost-effective to use the extended capabilities of the new generation of intelligent variable speed drives (VSDs) – also known as variable frequency drives (VFDs) - already used in many industrial pumping applications.

In addition to the benefits of energy efficiency and a variety of useful functions, such as pump cleaning to avoid blockages, some VSDs, including ABB’s ACS880 range, now incorporate anti-cavitation software. This makes it possible to prevent cavitation without the additional cost and complexity of external sensors and PLCs.

How does an intelligent VSD prevent cavitation?

The dedicated anti-cavitation software built into a VSD uses algorithms to measure pump torque and speed. It checks for the specific patterns that indicate cavitation is taking place. Since the measurements are taken directly from the pump shaft there is no latency in detection, so the response is virtually instantaneous. When it detects cavitation, the VSD adjusts the pump speed automatically to react to the change in pressure. It will resume normal operation as soon as the pump has stopped cavitating.

DCS-29-ABB-Cavitation4-400.jpg

Figure 4 shows the operating principle behind the anti-cavitation algorithm.

The VSD algorithm detects the onset of cavitation by comparing the torque measured on the pump shaft against the nominal torque. If cavitation starts, then the torque curve, shown in red, starts to rise.

The software responds by adjusting the speed reference, shown in blue, to a lower level. This results in a reduction in the actual motor speed, as shown in green. The algorithm can be adjusted to suit different operating conditions. In many cases, the VSD will be set up to stop the motor running if cavitation still continues for longer than a set time after the motor speed has been stepped down. In other applications it might be desirable to stop the motor as soon as cavitation is detected.

VSDs drive away the risk of pump cavitation

Pump cavitation is a significant risk for industry. If it is not tackled, it can cause significant damage and disruption to pumping operations as well as impacting product quality.

The new generation of intelligent VSDs now make it possible to solve cavitation locally, within the drive, in real time. Because the anti-cavitation software is built into the drive, no extra components such as sensors or PLCs needed. The only additional installation effort required is to set the operating parameters.

For further information, visit:  https://new.abb.com/drives/low-voltage-ac/industrial-drives.


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil