Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

September 28, 2021

In the world of motors, efficiency is king. It is apparent that consumers are looking for not only efficiency in cost to operate but also in ability to get the task done quickly. When converting electricity into rotational motion via motors, a major contributing factor to efficiency is the type of motor, such as a DC motor, used to keep the momentum going. There are two major types of DC electric motors, brushed and brushless. 

A motor brush is commonly known as a carbon brush and is typically made from a composite of carbon-graphite (the ratio of carbon to graphite may vary depending on application). These brushes are kept properly seated by use of aptly named brush holders. Brush holders are like a track that keep brushes from sliding in directions other than perpendicular to the moving surface of the motor. Inside the brush holder is a spring which keeps the brush in contact with a commutator to ensure a good electrical contact.

Brushed Motors

The brushed DC motor is comprised of a wound wire coil armature – the rotor – which acts as a  electromagnet (more commonly 2 or 4 pole and surrounded by stationary permanent magnets (on some applications, in addition there are field coils that are separately energized) – called the stator. With this, the current’s directionality is reversed two times per cycle (the first time to spin the rotor 180-degrees, and the second time to fully spin it 360-degrees) by a mechanical rotary switch called the commutator. Current flows both ways through the armature and allows the poles of the electromagnet to push and pull against the stator on the outside of the motor. This flow consistently creates and breaks the conductive circuit and in turn creates rotation to power whatever the motor is attached to on its shaft. 

Brushed DC motors are advantageous in their low construction costs, ability to be rebuilt or repaired, and general longevity in extreme environments. Of course, in some applications where the motor is exposed to dirt and dust, the commutator to brush connection can be obstructed. They have a simplified setup, essentially plug-and-play to a DC power source and they’re ready to go. However, with the nature of how brushed motors work, the constant creating and breaking of currents  may lead to increased electric and electromagnetic noise and reduces efficiency (you may even see sparking!). Additionally, brushed motors do tend to require more maintenance, more frequently, than their brushless counterparts because the internal components are in constant contact with the shaft of the motor. 

Brushless Motors

With the incredible advances in computer technology, along with low-cost and availability in supply, brushless motors came into existence. Brushless DC motors, also known as electronically commutated motor (ECM motor) or brushless permanent magnet motor, are a flipped version of a brushed motor in being that the rotor and stator are switched. The permanent magnets are on the rotor while the electromagnets are instead on the stator. The electromagnets in the stator are charged by a computer which causes the rotor to be rotated a full 360-degrees.

This system has no brushes that can be worn out, no sparking, and quieter operations. There is more precise control available when more electromagnets are added on the stator and easier cooling of the electromagnets for smoother operation. While the brushless motors are a higher initial cost to produce and implement, the efficiency in operation for most applications recovers the cost over time.

Brushless motors have come a long way and are top picks because of their reliability and lower maintenance requirements in applications such as manufacturing and electric vehicle design. Even though brushless motors are more common in general use presently, brushed motors are still preferred in certain applications. They uniquely have the ability to change the torque to speed ratio; therefore, brushed motors are still used widely in household appliances and automobiles.

Source


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil