Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

March 15, 2022

 

DCS Omron Four Steps to Getting Your First IIoT Projects Up 1 400

Data has always existed in the manufacturing environment - in the temperatures, pressures, sounds, and appearance of machinery - but is has not always been easy to access it. Manufacturing professionals would spend years, if not decades, gaining the expertise that would help them understand the meaning of certain measurements and observations. The Industrial Internet of Things (IIoT) promises to revolutionize this learning process by turning such observations into quantitative trends that can be leveraged for decision-making. Consequently, many manufacturers are eager to figure out the best way to dip their toes into the water of IIoT. In this post, Omron looks at some of the overarching strategies for making the most of this new way of using data. 

Step 1: Find a way to gather real-time data that maintains its integrity.

Data is becoming much easier to gather and store. That said, it’s important to find a simple way to maintain the integrity of this data as you gather increasingly large amounts of it. Make sure you have a network that’s reliable enough to handle lots of data and sufficiently secure to protect your operations from hackers.

The challenges involved in gathering data securely often require more cooperation between the information technology (IT) and operational technology (OT) segments of a business than is usually present. Bringing IT and OT together is key for ensuring that real-time data is readily available, can be stored for long-term trend analysis, and isn’t vulnerable to cyberattacks.

Step 2: Analyze the data to understand your processes and identify trends.

In this stage, you need to employ analytics to crunch the data from the previous step and see if you can identify any trends. This can be on a moment-to-moment basis (are there any parts of my machines that are currently overheating?) or a long-term one (are there any seasonal trends in production or machine health that could be related to humidity or other factors?).

From a broader data analytics perspective, the algorithms you use might even identify trends you wouldn’t otherwise be able to see. In fact, this strategy has blossomed into a growing market in which third-party analytics companies help smaller manufacturers. In some cases, in-house marketing analytics teams are also taking on the responsibility for plant floor analytics.

Omron’s AI Controller is an excellent way to discover these hard-to-see trends. By applying machine learning and optimization at the edge level, this controller helps you turn tacit knowledge (such as the intuition of experienced operators) into explicit knowledge and extract the most value from your equipment, even without putting any data into the cloud.

Step 3: Determine areas that could be improved with automation.

This is the meat of the matter. You’re not just gathering data for the sake of having an “IIoT application” – you’re gathering it to make informed decisions about how to make your operations more productive. Although you may feel like it’s important to at least be using the latest smart manufacturing technologies, you should also have a well-defined purpose.

This is why it’s important not to rush with the previous stage of analyzing your processes. You should have a thorough understanding of what’s going on in your facility at the machine level before you start implementing projects to improve things. Otherwise, your efforts to introduce automation may have unintended consequences.

Step 4: Design and implement the automated solutions and analyze the results.

To truly make a case for continuing to use IIoT in your facility, it’s important to get a clear set of before-and-after comparisons. That way, you’ll be able to demonstrate that your solution has led to real cost savings, and you’ll find it easier to justify future projects involving IIoT.

Omron can help support your next IIoT initiative with the all-encompassing Sysmac platform that gives you a single point of access for all data and runs on the ultra-fast EtherCAT network. You’ll also have access to embedded SQL client technology, OPC UA, and function blocks for protocols like MQTT.

Interested in learning more about Omron’s smart manufacturing technologies? Click here

DCS Omron Four Steps to Getting Your First IIoT Projects Up 2 400jpg

 

 

 

Source

 


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil