Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

 Juy 18, 2022

 

DCS IEC 62061 Safety Integrated Level by PILZ 1 400

Functional safety in accordance with IEC 62061

IEC 62061 / EN IEC 62061 represents a sector-specific standard under IEC 61508. It describes the implementation of safety-related control systems on machinery and examines the whole lifecycle from the concept phase through to decommissioning.

The new edition of IEC 62061 was published in 2021. This new edition is not just an update of the existing standard. For a start, the standard is no longer limited to electrical systems but can be used for all types of technology, such as hydraulic or pneumatic systems for example.

IEC 62061:2021 harmonized as EU standard EN IEC 62061:2021!

In April 2022, IEC 62061 was published in the Official Journal of the EU as harmonized standard EN IEC 62061, the content being identical.

DCS IEC 62061 Safety Integrated Level by PILZ 2 400

As a result, presumption of conformity has officially come into force within the EU. A manufacturer can assume that he meets the health and safety requirements of the Machinery Directive if he complies with the provisions of the EU standard. In the conformity assessment procedure, he can issue the declaration of conformity and so affix the CE mark to his plant or machinery.

Presumption of conformity for the previous version EN 62061:2005 ends on 11 October 2023 at the latest! After this transition period, new declarations of conformity can only be issued on the basis of EN IEC 62061:2021.

The European Commission announced the newly harmonized standards on the EU website with CID 2022/ 621, dated April 2022. As of May 2022, they have not yet been published by the EU Commission in the informal "Summary List"!

To read about the procedure for publishing harmonized standards in the EU, click here 

 

DCS IEC 62061 Safety Integrated Level by PILZ 5 400

You can also listen to the PILZ podcast "For Your Safety" to hear about the "Updates to the Standard IEC 62061" by clicking here 

 

Important changes to IEC 62061 / EN IEC 62061:

  • •Changes to the methodology used to define the required SIL level
  • •The need to draft a Safety Requirements Specification
  • •The option to use devices developed in accordance with other standards
  • •More details on safety-related application software

 

 

Contents of IEC 62061

DCS IEC 62061 Safety Integrated Level by PILZ 3 400

IEC 62061 addresses the issue of how reliable a safety-related control system needs to be. In this case the estimation is based on a hybrid method, a combination of a matrix and a quantitative approach. It also addresses the validation of safety functions based on architectural and statistical methods.

As with EN ISO 13849-1, the objective is to establish the suitability of safety measures to reduce risks. Even with this standard, extensive calculations are required. You can significantly reduce the work involved by using appropriate software such as the Safety Calculator PAScal.

 

How do you determine the required safety integrity in accordance with IEC 62061?

For each risk requiring a safety-related control system, the risk must be estimated, and the risk reduction (SIL) defined, dependent on the control system. The risk associated with the safety function is estimated in accordance with IEC 62061, with consideration given to the following parameters:

  • •Severity of injury (Se)
  • •Frequency and duration of exposure (Fr)
  • •Probability of occurrence of a hazardous event (Pr)
  • •Probability of avoiding or limiting harm (Av)

 

SIL classification in accordance with IEC 62061

Classification of severity (Se)

Consequences

Severity (Se)

Irreversible: death, losing an eye or arm

4

Irreversible: broken limb(s), losing a finger(s)

3

Reversible: requiring attention from a medical practitioner

2

Reversible: requiring first aid

1

 

Classification of the frequency and duration of exposure (Fr)

Frequency of exposure

Duration (Fr) <= 10 min

Duration (Fr) > 10 min

≥ 1 per h

5

5

< 1 per h up to ≥ 1 per day

4

5

< 1 per day up to ≥ 1 every 2 weeks

3

4

< 1 every 2 weeks up to ≥ 1 per year

2

3

< 1 per year

1

2

 

Classification of probability (Pr)

Probability of occurrence

Probability (Pr)

Very high

5

Likely

4

Possible

3

Rarely

2

Negligible

1

 

Classification of probability of avoiding or limiting harm (Av)

Probability of avoiding or limiting

Avoiding and limiting (Av)

Impossible

5

Rarely

3

Probable

1

 

What is determination of the required Safety Integrity like in accordance with IEC 62061?

Assignment matrix for determining the required SIL (or Plr) for a safety function

DCS IEC 62061 Safety Integrated Level by PILZ 4a 400

EXAMPLE: For a specific hazard where Se = 3, Fr = 4, Pr = 5 and Av = 5, then:
Cl = Fr + Pr + Av = 4 + 5 + 5 = 14
Using this table would lead to a SIL 3 or PL e being assigned to the safety function that is intended to mitigate the specific hazard.

 

How do you design a safety function?

For each safety function it is necessary to identify the critical elements for performing the function, the so-called subsystems. The selection or design of these subsystems must cater for a SIL which is equal to or higher than the required level. The combination of all of these subsystems must also enable you to reach the required SIL.

Each subsystem must meet the following requirements:


- Architectural constraints for hardware safety integrity
- Probability of dangerous random hardware failures (PFH)
- Systematic safety integrity (requirements for avoiding failures and requirements for controlling systematic faults)

 

Architectural constraints of a subsystem

The SIL value that subsystems achieve is influenced by the architecture of the control system and the "Safe failure fraction" (SFF) or diagnostic level.

Safe failure fraction
(SFF)

Hardware fault tolerance
HFT 0

Hardware fault tolerance
HFT 1

Hardware fault tolerance
HFT 2

< 60 %

Not permitted, unless well-tried components

SIL 1

SIL 2

60 % to < 90 %

SIL 1

SIL 2

SIL 3

90 % to < 99 %

SIL 2

SIL 3

SIL 3

>= 99 %

SIL 3

SIL 3

SIL 3

HFT: Hardware fault tolerance
SFF: Safe failure fraction

 

Requirements for the probability of dangerous random hardware failures

The probability of a dangerous failure of any safety-related control function (SRCF) because of dangerous random hardware failures shall be equal to or less than the failure threshold value defined in the safety requirements specification.

SIL level in accordance with IEC 62061

Probability of a dangerous failure per hour (PFHD) [1/h]

SIL 3

>= 10 E-8 to < 10 E-7

SIL 2

>= 10 E-7 to < 10 E-6

SIL 1

>= 10 E-6 to < 10 E-5

 

Why not try PILZ’s calculation tool (PAScal), which you can use to determine the relevant characteristic values with ease?

 

Further information:

Their experts will be happy to support you with the implementation of IEC 62061, thereby ensuring safe operation of your plant and machinery.

To learn more about PILZ services for automation, plant, and machinery safety, click here 

To use their Safety Calculator PAScal – Calculation tool for verifying functional safety, click here 

PILZ Logo 300x150

 

 

Source

 


Editor's Pick: Featured Article


DCS Put to the Ultimate Test Part 1 Torsion Tests by HELUKABEL 1 400x275

Cables and wires in industrial robots and other moving machine parts are often required to withstand extreme stresses caused by torsion. Constant repetitive movements put materials under considerable strain. At the same time, operators expect components to function perfectly and reliably throughout their entire service life to avoid disruptions, outages and safety hazards.

For this reason, at HELUKABEL, we simulate intensive and continuous torsion stresses under realistic conditions with our high-tech testing equipment in Windsbach. We have several types of apparatus for doing this because some of our customers, for example those in the automotive industry, have very precise specifications for how a torsion test is carried out. The tests show that our cables and wires withstand speeds up to 1,000°/s, accelerations up to 2,000°/s² and torsion angles up to 720°. Hence, we make sure that each product always meets our customers’ high standards, and that they receive the impeccable quality they rightly expect from us as a leading supplier of cables, wires and accessories for more than 40 years.

What Is Torsion?

 

To learn the answer, click here 

 


Sponsored Content


30 Minute Live Webinar 2:30 PM ET January 19th, 2023

DCS Siemens Sponsored Content 30 Minute Live Webinar January19 2023 300x250

 

 

With PC-based automation, you can implement applications and solutions that far exceed the functions of a classic controller. SIMATIC PC-based products offer you a flexible, innovative platform with long-term availability that give you a home field advantage when meeting the challenges of the digital factory for your machines and plants.

  

Register now

 


 


DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 

Latest News

  • Prev
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  World leaders from government and industry will meet in the southern Denmark city of ...
  The ABB #BuildtheFuture Roadshow delivers the latest electrical products, services, ...
  Global industry is accelerating its investment in energy efficiency in the next five ...
  In March 2022, the new edition of the installation standard IEC 61918:2018/AMD1:2022 ...
  On this episode of the Allied Expert Advice podcast, Carlos Riano, Senior Offer ...
  Advanced Micro Controls Inc. (AMCI) has realized growth throughout the Midwest United ...
  Ballard Power Systems recently announced that the company has launched a three-year ...
  Discover the difference a Gutor-backed setup can have on your business and ...

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil