Drives and Control Solutions

Motors, Control Solutions, Power Transmission and Advanced Motion Technology                                                                 

Mazak FSW 400March 2019

Some of the biggest challenges in manufacturing involve joining pieces of metal without altering their microstructure, creating substantial heat-affected zones, applying filler material or making the metal porous, especially where vastly different shapes and dissimilar metals come together.

As Mazak continues to advance the flexible talents of its HYBRID Multi-Tasking machines, one of the newest – and most innovative – of these capabilities lies in friction stir welding (FSW), a technology that addresses these joining challenges with new approaches that weren't readily available just a few years ago.

Best of all, Mazak combines FSW technology – which produces better welds than conventional methods – with conventional part machining capabilities for complete part processing on one highly productive multi-tasking platform.

Mazak has signaled its commitment to FSW technology with the integration of new acquisition Mazak MegaStir to the company and an ongoing commitment to further development of FSW as a pioneering part of its HYBRID Multi-Tasking machine concept. Since 2002, MegaStir has led the industry with improved FSW innovation and applications, becoming the global leader in the development and refinement of this technology. Designed for endurance and quality welding, MegaStir tools consistently produce top quality, high strength welds in a single pass.

Once the province of big companies who could afford the high price tags of custom, single-purpose machines, FSW has reached a more nearly mainstream role in which it incorporates fluently into subtractive multi-axis machines. The Mazak VTC-300C FSW and VTC-800 FSW incorporate the FSW process through spindle capability and programming flexibility on the SmoothG CNC. Both machines are Kentucky-made HYBRID Multi-Tasking products that feature a powerful 40-taper spindle, full traveling-column design and a fixed table for extremely long, heavy workpieces or multiple workholding fixtures.

HYBRID Multi-Tasking with FSW capability works especially well in semiconductor production, in manufacturing batteries and battery trays, and in producing vehicles, especially hybrid and electric models. For example, FSW is used to attach servo-drive motors to each wheel of electric cars, and shipyards employ FSW to join decking plates for aircraft carriers. In the energy industry, welded components can't go "down the hole" on deep drilling projects because welds become weak points on parts, but FSW joints maintain the same strength as the surrounding overall material.

As part of a Mazak HYBRID Multi-Tasking system, FSW produces lighter-weight parts and pure, clean joints that are stronger, higher quality and more durable than MIG welding and other options. It also requires less electricity and eliminates the problem of weakened material properties that can occur with conventional welding. These FSW technologies represent developments pioneered by Mazak MegaStir.

Friction stir welding outdoes MIG welding because the FSW process uses a solid-state combination of frictional heat with forging pressure to create full-penetration defect-free joints. A non-consumable FSW tool called a pin softens and stirs part material in a process that involves no powder or wire additives. Weld quality typically reflects material type; tool angle; traversing and rotation speeds of the tool; pin length, diameter and geometry; and the diameter of the tool shoulder, which changes weld diameter.

During the FSW process, neither the FSW tool nor the workpiece itself melts, which induces less heat into parts than other welding techniques, reducing heat-affected zones. FSW's rotating round tool plunges into workpiece material under vertical pressure, dwells momentarily to create a heat pool of plasticized material and then traverses along the workpiece to create the weld. The process moves material from one side to the other, breaking down grain structure and allowing the grains to regrow while the tool shoulder constrains the direction in which they form. That controlled, refined grain regrowth consolidates the welded joint, making the material stronger while retaining its original thermal and chemical properties.

Source

Latest Articles

  • Prev
  The way we generate power has been undergoing a radical shift over the last few years ...
  Trash compactors are one way that we can improve the environment by reducing the volume ...
  Robots are an integral part of the manufacturing industry worldwide to the extent ...
  The Ontario government has concluded a successful trade mission to South Korea and ...
  ABB and Hydrogen Optimized Inc. (HOI), the Canadian technology innovator unlocking ...
  What’s the secret to providing superior service and staying competitive in a changing ...
  When the Swiss engineering company Peter Huber AG won the order to upgrade and ...
  IEC 62061 / EN IEC 62061 represents a sector-specific standard under IEC 61508. ...
  NSK is a global manufacturer of ball and roller bearings, precision linear motion and ...
  World leaders from government and industry will meet in the southern Denmark city of ...

DCS Festo Didactic at the Forefront of Developing Canadas Future Workforce 1 400x275

With Canadian manufacturing suffering from a growing labour shortage, the participation of industry in skills development is emerging as a vital component in hiring and retention.

The needs are stark: The Canadian Exporters and Manufacturers Association says almost 40% of its members have jobs they can’t fill. Five years from now, 60% expect to be short-staffed, especially when it comes to skilled trades. Statistics Canada forecasts the country’s labour force growth rate will remain below 0.2% for the rest of the decade, below replacement levels.

This growing shortage is affecting companies of all sizes. Already, some manufacturers acknowledge losing out on contracts because they can’t find the manpower to fulfill them.

In reality, the challenge is two-fold: to replenish and expand the workforce to help close the gap between the number of job seekers and vacancies through 2030 when the last baby boomers reach age 65, and ensure workers get opportunities throughout their careers to upgrade or add to their skillset as current technologies evolve and new ones emerge. Festo, through Festo Didactic, one of the world leading provider of equipment and solutions for technical education, intends to help Canada meet this challenge on both fronts. In essence, the approach Festo has always taken is that the learning never stops.

 

Read more here


 

Product News

  • Prev
  When working with industrial pumping, such as crop irrigation or wastewater ...
  Littelfuse, Inc. has announced the new C&K Switches NanoT product line, a series ...
  VFD cables are a critical component to extend a motor’s life cycle within a VFD ...
  AutomationDirect has added new models of Dold safety relays to their line of safety ...
  AutomationDirect has added more low-cost ProSense float level switches. The new ...
  AutomationDirect has added new cable entry system options to their Murrplastik ...
   Emerson recently introduced the ASCO™ Series 209 proportional flow control ...
  Omron Automation Americas will introduce two new AOI systems at IPC Apex 2023 in San ...
  Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new ...
  ABB’s Sensi+ analyzer offers a reliable new solution which simplifies and reduces the ...

New Product

DCS New Emerson Valves Deliver Proportional Flow Control Performance 1 400x275

Emerson recently introduced the ASCO™ Series 209 proportional flow control valves, which offer the highest standards of precision, pressure ratings, flow characteristics and energy efficiency available in a purpose-built, compact architecture. With this combination of size and performance, Series 209 valves allow users to precisely regulate the flow of fluid in a wide range of devices that require exacting performance, like those found in the medical equipment, food and beverage, and heating, ventilation and air conditioning (HVAC) industries. 

Accuracy, response time and repeatability are critical in high-precision flow control applications, such as controlling tool speed in dental chairs, the flow of steam in coffee makers, water flow in cooling systems and hydrogen flow in fuel cells. Series 209 valves have low hysteresis (less than or equal to 5%), excellent repeatability (less than or equal to 1%) and high sensitivity (less than or equal to 0.2%) that contribute to their precision. 


To find out more, click here


 


Featured Product

DCS Teledyne Announces New Ladybug6 Cameras for High Accuracy 1 400x275 

Teledyne FLIR Integrated Imaging Solutions is pleased to announce the all new Ladybug6— the latest addition to its field proven Ladybug series. Ladybug6 is the leading high-resolution camera designed to capture 360-degree spherical images from moving platforms in all-weather conditions. Its industrial grade design and out-of-the-box factory calibration produces 72 Megapixel (MP) images with pixel values that are spatially accurate within +/- 2 mm at 10-meter distance.

“The new Teledyne Ladybug6 is designed for mobile mapping and all-weather inspection projects requiring excellent image quality and high resolution,” said Mike Lee, Senior Product Manager at Teledyne FLIR. “With the addition of Ladybug6, we are now pleased to offer a wider variety of spherical cameras with higher resolutions ranging from 30 MP to 72 MP.”

 

To learn more, click here


 


538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2025 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil